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1. ABSTRACT 
 

Bell's theorem, and inequalities that stem from it, address the conflict between the explanation of key experimental 
observations by quantum mechanics (QM) and by models expressing Locally Realistic (LR) properties, regardless of 
their inclusion or exclusion of hidden variables. To demonstrate the conflict between experimental results described by 
QM and LR models, a physical realization of the quantum state must be chosen. Entangled photons or electrons provide 
the most viable choices. In this work we consider a simplified version of a Bell inequality (BI) that focuses entirely on 
the physical state properties of photons in order to demonstrate the difference between QM and LR correlations. While 
the experiment we propose is in principle similar in intent to prior Bell inequality experiments, our version requires 
fewer measurements, and is more advantageous in its conceptual clarity. 
 
Keywords: polarization-entangled photons, Bell inequalities, local realism 
 

2. INTRODUCTION 
 

The concept of real properties for matter and fields formed a cornerstone of physical theory long before more precise 
observations of atomic spectra and other phenomena fostered the development of QM to describe them. Although the 
intuition of realism is supported by virtually all macroscopic experiences, it cannot be sustained as a fundamentally 
correct description of nature. Taken as an approximation to an underlying QM description, however, it is entirely 
sufficient for most realms of experience. Specialized methods and efforts are required to observe quantum entanglement 
that unveils the lack of locally realistic (LR) properties. Such methods employing polarization-entangled photons have 
been used to demonstrate the conflict of LR properties with observations of nature. QM has proven considerably easier 
to describe than to explain; so the latter will not be attempted and the discussion in this work focuses on experimental 
settings where quantum entanglement manifestations and conflicts with local realism are optimal.  
 
We interpret realism for objects or fields as properties possessed by objects that are independent of their measurement. 
These properties are assumed to provide a known response to any measurement, which may also be statistical in nature, 
thus entailing the use of probabilities. Such issues were dramatically highlighted in the 1935 Einstein-Podolsky-Rosen 
(EPR) paper [1] and by others. A series of insightful analyses were initiated by John Bell [2], largely in response to the 
issues raised by EPR and the apparent ‘paradoxes’ stemming from that work. The results of intensive BI experimental 
investigations have convincingly supported QM against all models based on LR or hidden variables [3, 4, 5, 6], even 
with a few experimental ‘loopholes’ remaining. For example, the ‘efficiency loophole’ requires a fair sampling 
assumption that is a particular challenge for photons, but progress continues toward its closure [7, 8].  To consider the 
QM-LR conflict in a simple and more direct context, we first describe an optimal manifestation of entanglement 
accessible to standard photon-based BI experimental configurations, such as illustrated in Figure 1. Entanglement means 
that certain correlation properties are associated with the composite bipartite photon state, but are not possessed by either 
member of the photon pair individually. For both QM and LR states, QM notation provides a convenient format to 
explicitly describe the inability for LR photon properties to describe the results of experiments employing states of 
entangled photons. 
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3.  LR PHOTON STATES: THE CONFLICT 
 

The simplest examples of photon states with LR properties are the separable states 1 2and ,Y H V Y V H= =  

where in 1Y the ket H denotes a polarized photon traveling to the left, and V denotes a vertically polarized photon 
traveling to the right. In both cases LR polarization properties are taken to be possessed by each photon. Their separation 
into product form ensures that there can be no influence by a measurement of say, the left photon upon the right photon, 

or vice versa, referred to as locality. We next consider an entangled state ( )( ) 2
ent

H V V H−Ψ = − described in 

QM formalism as a coherent superposition of the two LR product states 1Y and 2Y . The properties of ( )

ent

−Ψ are 

however, entirely different from the LR product states 1 2or .Y Y The entangled state ( )

ent

−Ψ exhibits neither locality 
nor intrinsic (‘real’) polarization for individual photons. What the notation compactly expresses is that the two photons 
have opposite polarization regardless of which pair is manifested upon measurement. A detection of either the left or 
right member then determines the result for the other, e.g. if an H is detected on the left, it is certain that V will be on the 
right, and vice versa. The key distinction is that no polarization is assigned to either photon prior to detection. Because 
the detection of one photon inherently influences the result for the other, locality is violated. This is also expressed by 
the fact that the entangled state is not separable, i.e. it is not factorable into a product of two LR states, one component 
describing the left moving photon and the other describing the right moving photon.  
 
Though the notation may set the stage, physical verification is required to demonstrate the existence of such non-local 
states lacking individual realism. This can be accomplished with the help of the experimental configuration in Figure 1. 
Figure 1 illustrates a typical BI experimental test setup, with the exception of optional polarizers inserted to generate 
(separable) polarization product states.  The central source emits entangled-photon pairs via the physical process of 
spontaneous parametric down-conversion (SPDC). The physical properties of the emitted pairs that form 
indistinguishable degrees of freedom can in principle be entangled.  However, in this work only the polarization degree 
of freedom of the photon is entangled; all others properties such as frequency or momentum are carefully unentangled in 
order to ensure there is no distinguishing polarization state information. 
 

 
 

Figure 1. The experimental configuration depicted is similar to those used in BI tests that utilize entangled photons from an SPDC 
source. Product state polarizers are inserted to convert entangled photons to un-entangled states. Angles a, a’ and b, b’ define 
polarization beam splitter (PBS) detector angles at the left and right sides respectively, while A, B define polarization angles for the 
left/right moving product state photons. Horizontally polarized photons H correspond to 0° (aligned with x axis), and vertically 
polarized photons V correspond to 90° (aligned with y axis).  
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In the “classical” case (employing the product state polarizers in Figure 1) both right and left moving photon polarization 
states are well defined and correlated before measurement. Any global relationship between the right and left moving 
photons however, is completely precluded by the individual realism of the product state. This means that when measured 
in the same basis as the photon’s polarization H,V, the result is perfect correlation i.e., a V (H) polarization at one 
detector implies that the other will be found with corresponding polarization H (V). There is clearly no mystery in this 
result until a different basis is chosen, and in particular when the choice of basis is made after the photons are emitted 
[6]. Both intuition and a straightforward calculation clearly reveal that the classical product state will not maintain 
perfect correlation for any basis not precisely aligned with the photon’s polarization. As an example, at right/left detector 
settings of 45° the correlation becomes zero. Note that unlike experiments in [4] and [6], the set up in Figure 1 does not 
implement angle settings changes after the photons are emitted. Such a feature could be incorporated in the experimental 
setup of Figure 1, but closing the BI loopholes is not the focus of this present work and will not be further addressed.  
 
In this work, we seek a clear distinction between measured results arising from entangled states and those constrained by 
LR properties. Such a distinction is not possible for single photon measurements. QM predicts that the polarization 
detected by means of measurements in the transmission (+) port or reflection (-) port of a polarization beam splitter 
(PBS) set to an arbitrary angle (basis) in Figure 1 will be random. The same statistical results can be simulated by a 
collection of LR states, linearly polarized at randomly selected orientations.  
 
It could be expected that it is joint properties of the photon pairs that will offer the distinction sought for, manifested in 
the correlations that can be measured between the left and right photon pair members. Before defining such a correlation 
measure explicitly in the next section, we make the explicit assumption that all single-photon states considered obey 
Malus’s Law at polarized interfaces, i.e. the transmission probability for a photon linearly polarized at angle A, at a 
linear polarizer detector with axis angle a, is given by 2cos (A-a),  with the corresponding probability for reflection 

(rejection) given by 2sin (A-a), in terms of the local angle difference. We define a common (0°) reference for both 
detector PBS angles and photon polarization angles such that H = 0° and V= 90°. A general single-photon state of linear 
polarization can be given by θ and a LR product state pair by θ φ . To progress, it will be necessary to consider 
measurements in bases set at angles other than 0° and 90° appropriate for H,V used thus far. This is accomplished by 
rotating the PBS before each photon counter, which allows each photon to be counted in one of the two ports; (+) for 
transmission, and (-) for reflection.  
 

4. CORRELATION MEASUREMENTS: THE PROOF 
 

The key measurements capable of distinguishing LR from QM, relate measurement results of a photon at one location 
(e.g. the left side of Figure 1) to those of the other photon at a spatially remote location (the right side of Figure 1). It 
will be evident that correlations derived from LR states will be quantitatively and characteristically different from those 
derived when entangled states are utilized. We define a correlation ‘overlap’ measure E with the following properties. If 
a photon enters the (+) port on the left, and the other photon also enters the (+) port on right, perfect correlation is 
defined by E=1. If the left/right photons enter opposite ports, say (+) for the left photon and (-) for the right photon, this 
measure is given by E = -1, describing perfect anti-correlation. Typically, the correlation data is statistically accumulated 
and the value of E is obtained by an average over many measurements at a given setting. An average value of E = 0 is 
designated as (perfectly) uncorrelated. Single-photon measurements are inherently statistical in that Malus’s law yields 
only probabilities. Therefore, many experimental iterations are required to realize the algebraic form of the probabilities 
from the (+) and (-)  product data accumulated at the four left/right port combinations: (+,+), (-,-), (+,-), and (-,+). In 
summary, a coincidence detection at the same ports on both sides (+,+) or (-,-) each yield a correlation value E = 1. A 
coincidence count (CC) at opposite ports (+,-) or (-,+) each yield a correlation value E= - 1. The net correlation is 
therefore the difference between the CCs in the same port and those in the opposite port, normalized by the total count 
number. Explicitly, E is given by the expression 
 

N N N N
E

N N N N
++ −− +− −+

++ −− +− −+

+ − −
=

+ + +
                                                                           (1) 
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where Nij is the number of CCs for detecting photons in the ith port on the left and in the jth port on the right, with i,j = 
{+,-}. Note that the state is uncorrelated (E=0) if the number of CCs in the same ports is equal to the number of CCs in 
opposite ports. 
 
Since the response for each single-photon state is known by Malus’s law, E can be computed for any LR photon product 
state pair A B with PBS detector angles set at a, b respectively. Each of the four coincidence combinations for the LR 
state yields a product of probabilities, with one factor corresponding to a probability for detection of the left photon, and 
the other factor corresponding to the probability for the detection of the right photon, as given by 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2
++

2 2 2 2

 N = Cos A-a Cos B-b ,  N = Sin A-a Sin B-b ,

 N = Cos A-a Sin B-b , N = Sin A-a Cos B-b .
−−

+− −+                                (2)

 

 
Note that each term in Eq. (2) is a product of sinusoidal terms whose arguments depend only upon local angle 
differences involving information solely on the left or solely on the right. 
 

We can now examine the correlations arising from aforementioned states of particular interest, 
( )

1 2, and entY Y
−

Ψ . 

For 
1 ,Y H V=  we let A= H = 0° and B = V = 90°. With some trigonometric manipulation we find for general PBS 

detector angles a and b: 
 

 ( )1 Product State Pair Correlation,cos(2 )cos(2 ),( , )E Y a ba b = −                                           (3a) 

( ) ( )( ) Entangled State Correlation.    cos 2( )    ( , ) ,entE a ba b−Ψ = − −                                          (3b) 
  
The second expression gives the well-known QM entangled state result (derived in the Appendix). The most pronounced 
difference between Eq. (3a) and Eq. (3b) is the fact that the entangled state correlation depends on the difference 
between the non-local detector angles (i.e. a on the left and b on the right), while the product state result depends on the 
product of terms whose arguments depend only upon local angle information. The origin of the angle difference a-b in 
the argument of Eq. (3b) stems the rotationally invariant (RI) nature of the entangled state ( )

ent
−Ψ . For the case of general 

polarizer/detector settings, one obtains ( )1 , cos(2[ ]) cos(2[ 90 ])( )E Y a b a A b B= − − − + o corresponding to Eq. (3a), while  

( )( ) ,( )entE a b−
Ψ = ( )2[{ } { 90 }]cos a A b B− − − − + o generalizes Eq. (3b), clearly illustrating the non-local character of the 

entangled state correlation. 
 
To realize other important correlation differences it is sufficient to consider the special case a = b with both detectors at 
the same angle, which simplifies Eq. (3a) and Eq. (3b) to 
 

( ) 2
1 cos (2 ), LR Correlation at ,( , )E Y a a ba a = − =                                            (4a) 

( )( ) 1, Entangled Correlation at .( , )entE a ba a−Ψ = − =                                (4b) 

 
The entangled state correlation described by Eq. (4b) is perfect (|E|=1) and independent of detector angle. This implies 
that the photons at each remote PBS detector always enter opposite polarization ports, even when the PBS detector angle 
settings (polarization bases) are chosen only after the photons are emitted from the source. A LR theory would have to 
address the question “how is this possible?” On the other hand, Eq. (4b) is a prediction of QM confirmed by experiments 
with entangled photons. A more interesting question to ask becomes: “Is Eq. (4b) realizable with photon states that are 
LR?”  If the answer is “no,” either conceptually or experimentally, the implication is that the assertion that photons 
possess LR properties must be invalid since it conflicts with the predictions of QM, as well as with experimental 
observation.  
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One counter example suffices in principle to establish the essential conflict. Consider the correlation of the real photon 
product states with identical detector angle settings (a = b) taking again A= H = 0° and B = V = 90°. For the case a=b = 
0°, the correlations are perfect for both entangled and LR states 
 

( ) ( ) ( )( )
1 21, and 1.(0 , 0 ) (0 , 0 ) (0 , 0 )entE E EY Y− = = =Ψ o o o o o o                                                  (5) 

 
Eq. (5) shows that product states exhibit perfect correlation in a basis where detector angles are parallel (or orthogonal) 
to photon polarization. However, it is the correlation results from intermediate angle settings that provide the critical 
distinctions (as is also the case in violations of standard BI). A setting a=b = 450 reveals this most dramatically, yielding  
 

( ) ( ) ( )( )
1 21,  0.and(45 , 45 ) (45 , 45 ) (45 , 45 )entE E EY Y− = = =Ψ o o o o o o                                     (6) 

 
In Eq. (6) the entangled state retains perfect correlation at the new (in fact, at any a=b detector) setting, but the LR 
photon states become completely uncorrelated since in this case 2cos (2 45 ) 0E = − ⋅ =o . The analysis of the LR result 
can be readily explained; each LR photon enters a PBS detector on the left and right side with 50% probability to exit at 
each of the two ports independently. Thus, on average there will be an identical number of coincidences in the same 
ports as in opposite ports yielding E=0. The above examples motivate our development of an inequality to establish a 
limit on the correlations for LR photon pairs.  
 

5. A LOCAL REALISM INEQUALITY FOR PHOTONS 
 

We denote , ( , )A BE a b  as the correlation value for a product state A B with left photon polarized at angle A, and right 
photon at angle B, for PBS detector angles a on left and b on right. We define a correlation parameter SLRP (where LRP 
denotes ‘locally realistic parameter’ for photons) 
 

, ,(0 ,0 ) (45 , 45 ) 1,LRP A B A BS E E≡ + ≤o o o o

                                                          
 (7) 

 
analogous to a BI measure. The ‘LRP inequality’ expressed in Eq. (7) is a key result of this paper, and is operationally 
equivalent to previous BIs. In an actual experiment the left/right detector angles a,b would be (randomly) alternated 
between both angles set to 0° or both set to 45°. No LR product states (or statistical combination of them) can exceed the 
upper limit SLRP =1 given in Eq. (7). However the correlations, found directly from employing Eq. (3b), confirm the 
entangled state ( )

ent

−Ψ violates the LRP inequality by a factor of two (i.e. SLRP =2), with perfect correlation (E=1) 
obtained for each term in Eq. (7) for detector settings a=b of 0° and 45°, respectively.  
 
We have previously shown that the inequality in Eq. (7) is satisfied, at equality by the state 0,90 0 90Y H V =≡ o o . 
Although this state is only a single illustrative example, it will be seen that it is a limiting case. In fact, any two detector 
angles (a,b) would yield an inequality of the form of Eq. (7) with the different upper limit, but a 45° difference between 
the angles a and b yields the optimum contrast (i.e. the minimal upper limit in Eq. (7)). It can also be shown that the 
inequality in Eq. (7) holds for LR product states of polarization with complex amplitudes, as well as any incoherent 
combination of product states, so long as the weighting factor sums are properly normalized. Statistical results apply 
where individual detection events are not deterministic, such as each single photon’s transmission at a polarizer. Eq. (7) 
also rules out the case where ‘hidden variables’ in the weighting factors could raise the averaged correlation value 
beyond the indicated upper limit.  
 
Other differences and similarities of the measure SLRP may be noted with respect to established BIs. The measure SLRP 
differs by being confined to state properties observable in an experiment, whether conceptual or physical. The 
measurements would entail only two detector settings a and b, while in contrast a typical Clauser-Horne-Shimony-Holt 
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(CHSH) [3] Bell inequality test utilizes four angles , and ,a a b b′ ′ . Several BI tests have made use of only two settings 
[3,4]. The primary difference from the measures utilized in [3,4] and SLRP is in the form; Eq. (7) involves a sum over two 
correlation (E) terms, while all prior BIs involve at least one difference term. The domains of distinction do not overlap, 
since the angle settings for which the LRP inequality is optimized (a=0°, b=0°, a’=45°, b’=45°) yield no CHSH violation 
for the entangled singlet state ( )

ent

−Ψ . Conversely, angle settings yielding maximal CHSH violation for the ( )

ent

−Ψ do not 
pertain to the conditions of LRP inequality. There is therefore no conflict between results derived from our measure in 
Eq. (7) and that of the standard CHSH inequality, and the implications for local realism are essentially the same. The 
LRP inequality given in Eq. (7) is conceptually clear; LR product state photons can exhibit only half of the correlation 
(SLRP=1) of an entangled state (SLRP=2, in an optimal setting) as shown numerically in Figure 2, because the photons in 
the former state must respond independently at each side, while photons in the entangled state do not. Experiments to 
confirm the LRP inequality are technically analogous to Bell violations, but here the entangled state is measured only at 
perfect correlation settings. Such experimental results for the entangled state itself have been carried out in prior work, 
but not for the LR product states. In a CHSH violation the contrast is lower (2 for LR states and 2 2 for maximally 
entangled states) in part because the more general scope of BI entails angle settings that cannot include perfectly 
correlated state measurements.   

 
 

Figure 2. A plot of the local realism inequality parameter SLRP of Eq. (7) shows that two-photon LR product 

states of linear polarization are bounded by SLRP = 1.0.  The entangled state ( )

ent

−Ψ  violates this inequality by a 

factor of 2 (SLRP = 2.0). 
 
5.1 Rotational Invariance for entangled and non-entangled photon pairs 
 
From the discussion in Section 4, the RI nature of the entangled state ( )

ent
−Ψ  is evident in the quantum correlations in  

Eq. (3b) and Eq. (4b). Note however, that RI not assumed, nor necessary for the derivation of the LPR inequality in Eq. 
(7). By construction, RI is clearly not a property of the LPR states 1 2,Y Y or in fact for most single-pair non-
entangled states. The question to be posed is whether a generalized combination of such LR states could exhibit RI when 
the correlation measurements are taken as a statistical average, as occurs in standard Bell-type experiments. This means 
that the LR state under investigation may be any statistical combination of product states, such as 1 2, and .Y Y  The 

(incoherent) sum is expressed as a density matrix of the form, say 31

1 24 4
( ) ( ) ( ),

a
Y Y Yρ ρ ρ= +  where the weight factors 

must sum to unity in order to normalize in order to conserver probability. By construction, this example LR state is not 
RI. The point here is to ascertain whether or not the most general LR photon pair state could mimic correlations 
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produced by QM entangled states.  Specifically, it is of direct interest to determine if a generalized LR state can be 
constructed to satisfy rotational invariance of the entangled state ( )

ent
−Ψ , and if so, can it reproduce the correlations o 

that quantum state?  
 
The construction is straightforward, requiring only an equally-weighted contribution from all LR polarization state pairs. 
This resulting state involves a continuous sum that is conveniently expressed in integral form. Each component state is 
of the product state form Y = ,θ φ or equivalently =Yρ θ φ θ φ  in a density matrix form. The state construction 
follows [9] using QM formalism that can treat either product or entangled states. The result is given below after adopting 
the simplification θ φ⊥  (or A=B+90° in Figure1) indicating that the source emits each photon pair with orthogonal 
polarization angles, which in an actual experiment would then be uniformly incremented. (The same statistics result if 
the angle settings are assumed to be randomized, though it is experimentally more difficult to implement). With the 
detector polarizers set to angles a and b, and denoting A(λ,a), B(λ,b)  the probabilities of a (+) result at left and right 

respectively for each angle value of (with 90 ),λ θ φ λ= = + o  the probability of coincidence detection in both (+) ports 
becomes   

( )
2 2 2

0
1 1 1

2 4 21P = p(λ)A(λ,a)B(λ,b)dλ cos ( )sin ( ) cos 2( ) .a b d a b
π

π λ λ λ++ −→ − − = −∫ ∫              (8) 

The first equality in Eq. (8) is equivalent to treatingλ as a hidden variable (designating the LR polarization state), which 
is distributed uniformly over all angles with probability ( ) 1 2 .p λ π=  In the second integral, the sin2 factor in the 
integrand arises from the orthogonal angle condition θ φ⊥ , specifically chosen to mimic the RI of the entangled state as 
closely as possible. When the other joint probability terms are calculated similarly (see Appendix Eq. (A4)) the resulting 
correlation for a RI LR state is given by  
                                       

( )1
2( ) cos 2( ) .RI P P P PE Y a b++ −− +− −++ − −= = − −                                              (9) 

 
A comparison with the QM correlation ( )( ) ( , )entE a b−Ψ in Eq. (3b) shows that the LR correlation in Eq. (9) is indeed 

identical in form, but the reduced in magnitude by a factor of two. This is fully consistent with the LR inequality (Eq. 7) 
and further clarifies the nature of the limits on LR, due to the independent nature of the response of the detectors upon 
measurement of each photon. In contrast, for the entangled state ( )

ent
−Ψ  the response of the detectors are not independent 

upon measurement of either photon, i.e. the left/right detection results are intrinsically correlated. The apparent non-local 
nature of the argument of Eq. (9) (involving the difference between spatially remote angles) is explained in the Appendix 
and shown to be intimately related to the factor of ½. 
                                        
 Another possible RI state is a product state constructed from circularly polarized single photon states .H i V± = ±  
However, such a state is not a particularly useful since its correlation is zero for any detector angle setting: 
  

( ) 0.CIRC CIRCY E Y= + + ⇒ =                                                                  (10) 
 

This result arises from the cancellation of terms when Eq. (3a) is used to evaluate the four terms in the density matrix 

CIRC CIRCY Y involved in the computation of E(YCIRC). 
 
5.2 CHSH Inequality: LR Bounds for Photon States 
 
The CHSH inequality defines a parameter S as  
 

| ( , ) ( ', ) ( , ') ( ', ') |,S E a b E a b E a b E a b= + + −                                                     (11) 
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in terms of the correlation measure E, used in the previous sections, and polarizer detector angles a, a’ on the left and 
angles b, b’ on the right (see Figure 1). It is well known that S ≤2 (with the upper limit SCL=2 known as the ‘classical 
bound’) for all states expressing locally real properties including those possessing a hidden variable description; this is 
the assertion of the CHSH inequality. Additionally, it is also widely known that the entangled state ( )

ent
−Ψ maximally 

violates the CHSH inequality, for certain detector angle choices (e.g.{ / 4, ' 0, / 8, ' / 8}a a b bπ π π= = = = − ), at the 

value 2 2,QS = which is the upper (Tsirelson) quantum bound [10] achievable by any physically realizable state.  

The question may be posed “does the set of LR photon product states A B saturate the classical bound SCL=2 for the 
CHSH inequality?” A complete numerical search of linearly polarized pairs is straightforward with computational 
software such as Matlab, and the result is plotted in Figure 3. The simulation reveals that for the states considered the 

upper bound for S is in fact 2,  rather than classical bound value of 2. It is indicative that the ratio between the maximal 
values of S in Figure 3 and SQ is exactly ½ , the same value found in Eq. (9) established by the LR inequality in Eq. (7).  
 
The CHSH inequality establishes upper limits on allowable states that are more general than those that pertain to LR 
photon-product states. The CHSH inequality establishes correct bounds for all states admitting a LR description, but S 
may not always achieve the value that saturates the inequality, SCL=2. This may raise a question as to which upper bound 
should pertain in actual experiments when categorizing mixed states such as Werner states [11] which can exhibit CHSH 
values for the S parameter over the domain{0, 2 2} .  
 
 

 
 

Figure 3. A plot of the S parameter in Eq. (11) for all LR product state pairs A B of linear polarization. S is evaluated 

for the CHSH Inequality with detector angle settings that yield the maximum violation 22  for the entangled photon 

state ( )

ent

−Ψ . The upper bound for S is 2  for these detector angle settings, versus its classically allowable maximum 

value of 2. 
 

6. A CONCEPTUAL APPLICATION OF ENTANGLEMENT 
 

The concept of quantum steering [12, 13] demonstrates the non-local effect that measurement has upon correlations. 
Quantum correlations, which violate local realism, enable a remote data acquisition that is not possible with LR photons. 
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A conceptual experiment entails several assumptions that are difficult to realize in a physically implementable 
experiment:  (i) no photon losses are incurred anywhere except at the inserted polarizer due to Malus’s law, and (ii) a 
single LR photon and an entangled-photon pair are available on demand. Nonetheless, Figure 4 illustrates the setup for a 
conceptual quantum steering experiment utilizing a single photon sent from Alice to Bob. 
 

 
Figure 4.  Quantum Steering of an Entangled-Photon State 

 
 
Figure 4 illustrates that Alice, at the distant left, must send a signal to Bob (distant right) using only a single photon to determine the 
fate of Bob’s cat, Schrodinger (a photon received by Bob triggers a device which acts questionably on the unsuspecting feline). There 
is only a single time slot available for the signal, which is known to Alice and Bob, as well as to an intermediate eavesdropper Eve.  
  
6.1 Analysis for the case when Alice sends Bob a LR photon signal 
 
In Figure 4, Eve (in the center) will disturb Alice’s message photon to Bob by inserting a polarizer into the path at some 
angle orientation θ. Eve’s objective is not to block the signal, but to let Alice know that its arrival will be uncertain. Eve 
therefore sends a classical message to Alice stating the polarizer orientation θ, carefully timed so the message arrives 
after Alice has launched her own signal photon towards Bob, but before it enters Eve’s polarizer. Eve naturally assumes 
that Alice can do nothing except discern the probability for her photon’s arrival at Bob.  
 
6.2 Analysis for the case when Alice employs an entangled-photon signal 
 
In this alternate case, Alice (knowing QM) acquires an SPDC source of polarization-entangled pairs ( ) .ent

−
Ψ  One photon 

is sent to Bob, and the other retained by Alice in a fiber loop (see Figure 4). When Alice receives the message from Eve 
revealing the perturbing polarizer angle θ, Alice (quickly) releases her fiber-loop-stored photon and passes it through a 
half-wave plate and into a PBS detector, both rotated to the angle θ. The measurement instantly collapses the entangled 
state before Alice’s signal photon reaches Eve’s polarizer. The signal photon sent to Bob therefore acquires the 
polarization state orthogonal to that of Alice’s locally measured photon. Alice now knows with certainty (i.e. with unit 
probability) the state of Bob’s received photon, in particular whether or not it passed Eve’s polarizer. The details are: (i) 
if Alice measures her photon to be in the polarization state θ, then Bob receives no photon since the signal photon is in 
the state, 90θ θ

⊥
= + °  and therefore does not pass through Eve’s inserted polarizer set at angle θ, (ii) if Alice measures 

her photon to be in the state θ
⊥
then Bob’s signal photon must be in the orthogonal polarization state θ, and hence passes 

through Eve’s inserted polarizer set at angle θ.  Note that Alice has no control over which polarization state she 
measures, θ or θ

⊥
, because the collapse of the state in the port θ or θ

⊥
is an inherently random process. 

 
By utilizing a signal from an entangled-photon pair Alice therefore adapts to a specially contrived hostile intrusion by 
Eve, and is able to know with certainty the result of her photon message to Bob (and hence the fate of his cat). Alice is 
not able to control the outcome of the message received by Bob, as that would violate the no-signaling (non-
superluminal) constraint of special relativity. Any source constrained by LR properties, such as the single LR photon 
utilized in the first case, could yield no definite information as to the fate of Bob’s cat in this circumstance, rather only a 
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probabilistic estimate. On the other hand, the non-local effect (‘quantum steering’) resulting from the use of the signal 
photon from an entangled-photon pair enables an elementary information processing task. 
 
To complete this picture of measurement induced state collapse, it should be pointed out that Alice made a choice when 
she learned of the ‘threat,’ i.e. the value of θ; she could have instead waited until her signal photon entered Eve’s 
polarizer before measuring her fiber-stored photon. The measurement-collapse would take place at Eve’s polarizer, so a 
later measurement of Alice’s stored photon (in the θ basis) reveals the result (fate) of Bob’s photon (and hence, his cat). 
The final result in this later passive scenario appears to be similar to the end result of the active scenario discussed in 
Section 6.2 above.  However, it turns out Alice had very good reason for her active choice in the ‘steering.’ By making 
use of entangled photons, Alice knows with unit probability the subsequent (remote) fate of Bob’s cat; thus any 
consequential decisions on her part can be made with surety. Had Alice instead chosen the ‘passive’ option, the feline 
fate information would not be available to her until after her photon reaches the (very remote) intrusive polarizer, and 
she had made a measurement on her locally stored photon. With her ‘active’ choice, Alice induces the state collapse and 
can make use of the definite information regarding the feline’s fate before it takes place (i.e. before her photon reaches 
Eve’s polarizer). Clearly, with LR photons no such options are even conceivable. 
 

7. SUMMARY 
 

The implication that QM denies the existence of inherently real properties for individual objects was a concept 
unpalatable to A. Einstein [14]. The EPR paper [1] did not actually express disagreement with a QM description of 
nature, rather it suggested that a more complete theory could be found, and in particular one that would retain local 
realism. QM does not preclude LR properties for systems; conservation of energy, momentum and many other physical 
properties have unequivocally ‘real’ values in the theory prior to measurement. When entangled photons are utilized 
there is a ‘joint reality’ to the global description of the polarization ascribable to the composite singlet state of the pair of 
photons (analogous to zero spin), as opposed to the individual single photon constituents. What the work presented in 
this paper has explored, and which extensive prior research has confirmed, is that the notion of individual photon realism 
precludes certain correlations that are actually observed in experiments.  
 
The QM description of an entangled system includes joint properties, but in general provides no description of individual 
‘real’ properties ascribable to subsystems. It can therefore give correct descriptions of correlations which are joint 
properties, without conflicting with the constraints of local realism, a few of which have been explored in this work. If 
one were to seek a somewhat anthropomorphic interpretation, it could be argued that in certain systems where joint 
realism and individual realistic properties must be mutually exclusive, nature has chosen the former over the latter in the 
exhibition of entanglement. QM in general describes the results correctly without the need for such ‘interpretation.’ With 
regards to realism, Bell’s work, along with that of many others, has clarified the notion of local realism. The work 
presented in this paper has attempted to develop a simple correlation measure to more directly assist in this clarification.  
 

8. CONCLUSION 
 
Bell’s inequality and subsequent work convincingly established the case against LR and hidden variable models. That 
was accomplished by addressing all models that entail LR, and by using very general algebraic and logical arguments. 
Typically, violations of a BI are accomplished by means of a counterexample employing a quantum entangled state that 
is experimentally measured to demonstrate the maximal violation of the inequality.  The approach taken in the work 
presented in this paper may be viewed as reversing the order: the entangled state properties are first examined in the 
context of the physical states measured experimentally. Those same states (photons in this case) are then constrained by 
LR properties to determine if there is a conflict with observed and predicted results. The scope is less general than prior 
BI analyses, and does not conflict with those results. Nevertheless, some new insight and experimental simplification is 
gained by the approach taken in this paper, and the quantitative results are in a sense complementary to the prior 
established work.   
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APPENDIX:  CORRELATION CALCULATIONS 

 

A1. Correlation of the Entangled State
( )

ext

−

Ψ  

It should be noted that all calculations of transmission (reflection) at polarized interfaces (PBS), and correlations at 
several interfaces, can be calculated directly from Malus’s Law for either entangled or product states; QM formalism is 
convenient, but not essential to obtain the results. In the QM notation a linearly polarized photon state θ can be defined 

by an angle in the ,H V  basis. A polarization measurement entails projecting the state on to one of the two basis 

states with amplitude 
2 2| and probability | cos ( )H Hθ θ θ= , expressing Malus’s Law. Rotation of the detector 

angle yields new basis elements , { , }a a aH V R H V=  and , { , }b b bH V R H V= for left, right photons where 
  

cos( ) sin( )

sin( ) cos( )
a

a a
R

a a
=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
cos( ) sin( )

sin( ) cos( )
b

b b
R

b b
=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

.                                                 (A1) 

 
 The correlation probability for a photon pair at any polarized exit port combination is then given by: 

2

,H H a bP H H= Ψ with , , ,, ,H H H V V HP P P given analogously. The evaluation of E is straightforwardly carried out by 

insertion of any state into Eq. (10). However the evaluation of ( ), , , , ,a b V V H H V H H VE P P P PΨ = + − − is simplified by 
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utilizing the symmetry that arises from the rotational invariance of the entangled state. Using the rotation matrices it is 
straightforward to confirm that   
                     

( )1

2

( )( )a b a b a bR R H V V H−⊕ Ψ = −
                                                   

   (A2) 

 
has a form that is basis independent. This invariance under rotation allows a simple choice of basis for calculation;
i.e.  a = 0, and δ (a - b).≡  Then, b δH = H and H = Ha . Thus Eq. (10) and the three other terms can be evaluated by 
inspection to yield 
 
                                ( )( )

, , , , ,a b V V H H V H H VE P P P P−Ψ = + − −  

                                                 
2 2 2 21 1 1 1

2 2 2 2| | | |V V V V V H V Hδ δ δ δ+ − −=                                      (A3) 

                          
( )

( ) ( )

2 2 2 21
2

( )
,

sin ( ) sin ( ) cos ( ) cos ( ) ,

cos 2( ) for the entangled singlet state.a bE a b

δ δ δ δ
−

= + − −

⇒ Ψ = − −
      

                       
A2. LR RI State 
For the uniformly distributed (normalized) product state of Eq. (8) we have 
 

2 2 21 1 1
2 4 20

2 2 21 1 1
2 4 20

2 2 21 1 1
2 4 20

2 2 21 1
2 0

( , ) cos ( )sin ( ) [ cos 2( )],

( , ) sin ( )cos ( ) [ cos 2( )],

( , ) cos ( )cos ( ) [ cos 2( )],

( , ) sin ( )sin ( )

P a b d a b a b

P a b d a b a b

P a b d a b a b

P a b d a b

π

π

π

π

π

π

π

π

λ λ λ

λ λ λ

λ λ λ

λ λ λ

++

−−

+−

−+

= − − = − −

= − − = − −

= − − = + −

= − − =

∫
∫
∫
∫ 1

4 2[ cos 2( )],a b+ −

                         (A4) 

 which yields  
 

( )1
, , , , 2( ) cos 2( ) for a LR state with Rotational Invariance.RIE Y P P P P a b+ + − − + − − ++ − − − −= =      (A5)                       

 
A3. Origin of the apparent non-local argument and factor of ½ in Eq. (A5) 
As noted in the text, Eq. (A5) has the same form as the correlation obtained from the entangled state ( )

ent
−Ψ in Eq. (3b), 

but with ½ the magnitude. In addition, the argument of cosine in Eq. (A5) apparently exhibits non-local behavior in that 
it involves the difference of remotely separated detector angles: a on the left and b on the right. This later observation is 
in fact intimately related to the factor of ½ in Eq. (A5) as can be seen as follows.   
 
From the expression of E(YRI) in Eq. (A5), let us first sum the integrands in Eq. (A4) before performing the integral over 
the angle λ. Grouping terms, we find that the integrand of the expression (P+,+ - P+,-) + (P-- - P-+) is given by – cos(2(a- λ)) 
cos(2(b- λ)) which exhibits local realism in that the expression factors into a product of two terms, whose arguments 
depend only on local angle differences solely on the left and solely on the right, respectively. Using a trigonometric 
identity, we can rewrite this expression as the sum of two cosine terms whose arguments are the sum and difference of the 
local angle differences (a- λ) and (b- λ) yielding - ½ cos(2({a- λ }-{ b- λ })) – ½ cos(2({a- λ }+{ b- λ })) =  
-½ cos(2(a-b)) -½ cos(2(a+b-2 λ)). The first term -½ cos(2(a-b)) is independent of photon angle λ and is unaffected by the 
subsequent integration over λ. This is precisely the expression appearing in Eq. (A5), which is half the magnitude of the 
quantum entangled state correlation ( )( ) ( , )

ent
E a b−Ψ given by Eq. (3b). The remaining term -½ cos(2(a+b-2 λ)) explicitly 

depends on λ and therefore averages out upon the subsequent integration over λ. 
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The conclusion is that both the factor of ½ and the remote angle difference form (a-b) of the argument of Eq. (A5) both 
stem from two sources: (i) a trigonometric re-writing of the LR factorable form – cos(2(a- λ)) cos(2(b- λ)) for the  
argument of the correlation for the state YRI , and (ii) our particular experimental choice to set the left and right moving 
photon angles to the same value A=B= λ, which forces one half of expression in (i) to average out upon the integration 
over λ (required for expressing the RI fo the LR state YRI). 
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